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Abstract-The stability ofan elastic system with two degrees of freedom (Ziegler's double pendulum) is analyzed
under the action ofa retarded follower force. The results. obtained via Pontryagin's theorems on roots ofexponen­
tial polynomials, are presented as regions ofstability and instability in the time lag-applied force parameter space.
It is shown that in the absence of damping a small time lag will destabilize the system for all values of a compres­
sive force.

INTRODUCTION

THE term "follower force" can be defined as a force of constant magnitude, the direction of
which follows the orientation of some part of the associated structure in a prescribed
manner. The rocket engine of an aerospace vehicle, for example, is a source of a follower
force, since the direction of its thrust is determined by the simultaneous orientation of that
part of the vehicle to which the engine is attached.

It was first discovered by Ziegler [1Jthat a follower force, being generally non-conserva­
tive, can cause structural instability by flutter, rather than by divergence. He also pointed
out an unusual property of follower force systems: velocity-dependent damping, even when
vanishingly small, can destabilize the system. A considerable volume ofadditional literature
has appeared on the subject in recent years; a review article has been written by Herrmann
[2].

If a force is made to follow the orientation of some part of the structure by means of a
servomechanism, then we are dealing with a "retarded follower force". The term retarded
refers to the inevitable time lag between the input to a directional sensor attached to the
structure, and the execution of the appropriate correction to the direction of the force. An
example is provided by a simple proportional feedback system used for directional control
of missiles, where the thrust gimbal angle (J is determined by the rotation </J of the attitude
sensor in the following way: (J(t) = k</J(t - r), r being the (constant) time lag of the servo­
system.

Although the subject of retarded actions has received considerable attention in control
theory, its application to mechanical systems has been confined mainly to the linear
oscillator. The first paper in this field, by Minorsky [3J, showed that an attempt to stabilize a
viscously damped pendulum by a servo-operated counterweight can actually result in
instability by flutter. The general problem of a linear oscillator and constant time lag has
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since been attacked by several authors, the most recent paper being due to Bhatt and Hsu
[4], which also contains a review of the subject.

The effect of a time lag on a mechanical system with multiple degrees of freedom, which
includes follower force problems, does not appear to have been studied, despite its potential
importance in structural stability of aerospace vehicles. After Beal [5] and Glaser [6] first
pointed out that the thrust of existing missiles, if taken as constant, is too small to produce
instability (no time lag was considered), attention has been focussed in numerous contractor
research reports on the combined action of a follower force with parametric excitation,
thrust build-up, and aerodynamic forces.

The present paper will show that a small retardation ofa follower force can be destabiliz­
ing for all values of the force. The simple model used for the study is, apart from the inclusion
of time lag, identical to the double pendulum originally used by Ziegler [1], and later
utilized by others [7,8J in extending Ziegler's work. Although the model bears only a
remote relationship to a real structure (a cantilever beam), it was chosen due to its mathe­
matical simplicity, which enabled us to derive the stability criteria in a simple form. Another
sacrifice to algebraic brevity was the omission of velocity-dependent damping.

The frequency equation ofthe system was derived in the conventional manner, resulting
in an exponential polynomial possessing an infinite number of roots. The stability criteria
were then determined by investigation of the nature of these roots, using certain theorems of
Pontryagin [9J on the zeros of transcendental functions.

DERIVATION OF FREQUENCY EQUATION

The double pendulum, shown in Fig. 1, consists of two rigid, weightless rods (AB and
Be) of equal lengths 1, which carry the masses 2m and m at Band C, respectively. Rotation
of the rods, measured by the angles rP 1 and rP2, is resisted by elastic torsion springs located in
the hinges at A and B, the spring constant being c for each hinge.

The load consists of a force of constant magnitude P acting at C. We assume that its
direction 0 follows the orientation of BC with a constant time lag or, i.e.

O(t) = rP2(t or). (1)

Elastic
hinges

FIG. I.
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(2)

As mentioned before, this retarded action could arise if the direction of P were controlled by
a servomechanism which obtains its imput from a directional sensor attached to Be.

The linearized equations of motion of the system described are

3m12cj) 1 +mI2cj)2+(2c-Pf)<PI-C<P2+PW = 0

mPcj)l +mPcj)2-c<PI +(c-PI)<P2+PUJ = 0

where the dot denotes a time derivative. The solutions of (2) can be expressed in the form

(3)

(4)

or in linear combinations thereof. Equations (1) to (3) lead to the frequency equation

1

3mPz2+2c-Pl mPz2-c+Ple-ZT\ = 0.

mpz2-c mpz2+c-PI+PI e- ZT

If we set r = 0, the left side of (4) becomes a biquadratic polynomial in z; hence the
stability of the system can be determined in the usual manner, using the Routh-Hurwitz
criterion. It has been shown [1, 7] that instability can occur by flutter only, the critical load
being Pcr 2·086 ell.

For positive, nonzero values of r it is convenient to introduce the dimensionless para­
meters

PI r
F = c' !) = (mPle)t' t'f = rz. (5)

Equation (4) then takes the form H('1) = 0, where

H('1) = [2'14+(7 -4F)!}2'12+(F2- 3F + 1)!}4]e"+ F[2'12!}2 +(3 - F)!}4] (6)

is an exponential polynomial in '1, possessing an infinite number of roots.
The system described can be called stable if <PI and <P2 remain bounded regardless of the

initial conditions, i.e. following any disturbance to the system within the bounds of the linear
approximation. Therefore, a sufficient and necessary condition for stability is that all the
roots of H(t'f) have negative or zero real parts. In particular, if the roots have negative real
parts, then <PI' <P2 -+ 0 as t -+ 00, and the system is said to be asymptotically stable.

PONTRYAGIN'S STABILITY CRITERIA

Pontryagin's theorems [9] give necessary and sufficient conditions for all the roots of an
exponential polynomial to possess negative real parts. Therefore, they are necessary and
sufficient conditions of asymptotic stability for linear systems with constant time lag, in a
manner similar to Routh-Hurwitz criteria for systems without time lag. The stability criteria
ofPontryagin can be stated in several forms, the most convenient of these for our application
will now be summarized.

All the roots of the equation H('1) = 0, where H('1) is an exponential polynomial, have
negative real parts if, and only if, all of the following conditions are satisfied:

Condition [

Let H(t'f) = h('1, e"), where h is a polynomial of degree r in '1, and of degree s in e". The
polynomial h must possess a principal term, i.e. a term of the form C'1 r e'".
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Condition I I

Substitute /] = iy, where y is a real variable, and then separate H(iy) into its real and
imaginary parts:

HUy) H.(y) + iHi(y).

The function HiCy) must possess exactly 4ks + r real zeros in the interval

- 2kTt: +e :;; y :;; 2kTt: +e

for a sufficiently large value of the integer k, e being some constant.

Condition I II

For each zero of H,{y), denoted by a, the inequality

Hr(a)H';(a) > 0

must be satisfied, where the dash denotes a derivative with respect to y.

DERIVATION OF CONDITIONS FOR STABILITY

We will now apply the stability criteria of Pontryagin to the frequency equation (6),
with the aim ofdividing the F - 0 coordinate space into stable and unstable regions.

Condition I
In our case r = 4, s = 1. Inspection of(6) now reveals the presence ofthe principal term,

namely 2/]4 e".

Condition II
Substitution of /] = iy (y is real) in (6) yields

Hr(y) = [2y4_(7 -4F)Q2y2 +(F2-3F + 1)04
] cos y+F( _202y2 +(3 - F)04]

Hly) = [2y4 -(7 _4F)Q2y2+(F2- 3F+ 1)04] sin y.

The function Hly) must have 4k +k real roots in the interval

(7)

-2nk+e :;; y :;; 2nk+e.

Since sin y contains 4k roots in this interval, Condition II is reduced to the requirement that
all the roots of the biquadratic polynomial

(8)

must be real. It is sufficient to confine our attention to the two positive roots only, which are

Real values are obtained only when

F2-3F+l > 0, (7-4F)2-8(F2-3F+l) > 0 7-4F > O.

(9)

(10)
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It is easily verified that all these inequalities are satisfied only if

F < t(3 -)5) = 0'382 (11 )

Therefore, (11) represents a necessary condition for asymptotic stability. From now on we
will consider only those values of F which satisfy (11).

Condition III

In order to investigate the condition H,(a)H/(a) > 0 for all roots a of Hi(y), we must
handle separately the following four categories of these roots:

(i) the zeros of A(y)
(ii) a = 0

(iii) a = ±mn, m = 1,3,5, .
(iv) a = ±nn,n = 2,4,6, .

Category (i)

If a denotes a root of A(y), then we obtain from (7)

Since (12) is an even expression in a, no generality is lost by using only the positive roots,
given by (9). With the abbreviation

(13)

we obtain

(14)

The plots of K(F) and ±(2F -1) in Fig. 2 verify the following inequalities for F < 0·382:

±(2F-1)-K(F) < O.

As a consequence, the necessary condition for stability is reduced to F sin a 1•2 < 0, i.e.
there must exist positive, nonzero integers M and N, such that

(2M -1)n < a1 < 2Mn, (2N-l)n < a2 < 2Nn (15a)

10~:---- -""TT--------'

5

5r----
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-5

FIG. 2.
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if 0 < F < 0·382 (compressive force); or

(2M - 2)n < at < (2M -1)n, (2N - 2)n < a2 < (2N - l)n (I Sb)

if F < 0 (tensile force).
The destabilizing effect of a small time lag for the case of positive F can now be proven.

We deduce from (1 Sa) that a necessary condition for stability is a l > n. Since, according to
(9), at is proportional to 0, we can violate the above inequality by making 0 sufficiently
small. In fact, we can place a lower bound on the stable range of 0 by showing that the
maximum value of a l with respect to F is to(7 -,j4i)t = 0·386Q, occurring at F = 0.
Therefore, stability can exist only when 0 > n/O·386 = 8·53.

On the other hand, if F is negative, we can always choose a sufficiently small Q such as to
place both at and a2 in the potentially stable range (0, n).

Category (ii)
It is easily verified from (7) that H,(O)H;'(O) = Q8(F2 - 3F+ 1). The condition H,(O)H;'(O)

> °is thus equivalent to the first inequality in (10), and yields nothing new.

Category (iii)

If a = ±mn, m = 1, 3, 5, ... , we obtain from (7)

H,(a)H;'(a) = A(a)B(a)

where A(y) is given by (8), and

B(y) = 4y4_(7-6F)02y2+(2F2 -6F+l)04.

(16)

(17)

The condition H,(a)H;'(a) > °demands that A(a) and B(a) must have the same sign for all
values of a in this category. (Again, no generality is lost by considering the positive values
only.)

The roots of B(y) with positive real parts are

(18)

We must now investigate two subcases, determined by the value of these roots.
(a) If 2F2 -6F + 1 < 0, i.e. t(3 -)7) < F < t(3 +J7), only b2 will be real, and the

corresponding behaviour of B(y), together with that of A(y), has been sketched in Fig. 3. It
can be deduced that A(a) and B(a) will have the same sign at a = n, 3n ... only when b2 < n
and n < at,2 < 2n, where the lower bound on at,2 is determined by (l5a). However, it is
possible to show that the previously derived necessary condition Q > 8·53 makes a2

considerably larger than ai' such that either at or a2 will always violate the second in­
equality. We can now conclude that a necessary condition for stability is that both b l and b2

must be real, i.e.

F < !(3-J7) = 0·177 (19)

which supersedes condition (11) obtained previously.
(b) If(l9) holds, the corresponding behavior of B(y), also shown in Fig. 3, leads us to the
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conclusion that A(a) B(a) > 0, a = n, 3n . .. only if
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(2M -1)n < b1 < (2M + l)n,

if F is positive, or

(2M - 3)n < bi < (2M -1)n,

(2N -l)n < bz < (2N + l)n

(2N - 3)n < bz < (2N -1)n

(20a)

(20b)

if F is negative. The integers M and N are determined by (l5a) or (15b).

Category (iv)
With a = ±nn, n = 2,4,6, ... , equations (7) yield

Hr(a)H/(a) = A(a)C(a)

where

(21)

(22)

and A(y) is again defined in (8). The zeros of C(y) are always real for F < 0'177, the positive
roots being

(23)

Since the behaviour of C(y) is similar to that of B(y) in the same range of F, the condition
Hr(a)H/(a) > 0, a 2n,4n ... , becomes

(2M -2)n < C1 < 2Mn, (2M -2)n < Cz < 2Nn (24)

for positive as well as negative values ofF. The values of M and N are again defined by (15a)
or (l5b).

The conditions (15), (19), (20) and (24) are necessary and sufficient for the system to be
asymptotically stable. If the values of the parameters F and n are such that anyone of the
above conditions is violated, asymptotic stability will not exist



406 J. KIUSALAAS and H. E. DAVIS

DISCUSSION OF RESULTS

It was previously noted that Pontryagin's criteria represent conditions for asymptotic
stability. The possibility of steady-state solutions, which are also considered stable motions.
should be investigated separately. However, it is unlikely that additional zones of stability
will be found in this manner. Previous work on follower forces, as well as on linear oscillators
with a time lag, has shown that steady-state solutions occupy lines, rather than finite
regions, in the parameter space of the system (such as the F - a coordinate plane). Conse­
quently, they are of no practical interest.

The most important result of the analysis is the observation, discussed in the previous
section, that a sufficiently small time lag destabilizes the system for all positive (compressive)
values of F. Even under the most favourable time lag, the upper bound of the critical load
was shown to be F = 0'177, which is considerably smaller than the corresponding value
for the same system without the retarded action, namely F = 2·086.

Another noteworthy feature of the analysis is the apparent paradox that the case of
vanishing time lag (letting a -> 0 in Pontryagin's stability criteria) does not yield the same
results as the case ofzero time lag (setting r = 0 in the original frequency equation). Part of
the reason for this can be traced back to the transformation of equation (4) into (6). During
this procedure both sides of the equation were multiplied by 0 4

, thus making (6) invalid
for a = 0. Nevertheless, we can argue that the results we obtained are valid for all nonzero,
positive values of0, even if they are very small. Consequently, a transition from instability
to stability will take place at a = 0, °< F < 2'086, as a -> 0.

A similar situation arises when the influence of linear-viscous damping is investigated:
in a certain range of F a transition from instability to stability is observed as the damping
coefficient is reduced from a vanishingly small value to zero. A physical insight into this
transition has been proposed by Herrmann and long [8]. By considering the actual motion
of the pendulum, they showed that the "degree of stability" (rate of amplitude increase)
undergoes a continuous change as the damping coefficient is reduced to zero. We suggest
that a similar technique could be used, at least in principle, in explaining the effect of
vanishing time lag on the stability of the systems.

The behaviour of the system is radically different if F is negative. Since all the roots
of A(y), B(y) and C(y) are proportional to 0, a sufficiently small time lag can place all the
positive roots in the stable region (0, n) regardless of the value of F.

A more detailed investigation of stability of the system is ideally suited for digital
computer application. We used equally spaced values of F and a as the input, each set of
values of (F, 0) producing an output in the form of the character"U" if any of the stability
conditions were violated, or the character "s" if all the conditions were satisfied. The
printout was arranged as a two-dimensional array of these characters in the F-O coordinate
system. A sample printout, covering a large range of time-lag, is shown in Fig. 4.

Additional information about the structure of stable zones can be obtained by plotting
ada, bdO etc. as functions of F, as in Fig. 5. For positive F we see that bl < a l < ('I'

b2 < a2 < ('2' while these inequalities are reversed for negative F. The stability criteria
(15), (20) and (24) can then be replaced by the simpler conditions

hi > (2M -1)n, ('I < 2Mn

h2 > (2N -1)n, ('2 < 2Nn



F

!

~-
5.000 10.000 15.000 20.000 25.0CQ 30.0110 ~.OOO 40.000 45.000

UUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIJUULJLJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUlIUUUUUUUUUUUU
UUUUUUUUUUUUlJUUUUUUUUlIUUUUUUUUUUUUU,JUUUUUIJUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUlIUUUUUUUUUUUU
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULULUULUUUUUUUUUUUUUUU
UUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
UIJUUUUUUUUUUl'UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUlIUUUUUUUUUUUUUUUUUUUULJI
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUlIUUUUUUUUUUUUUUUUUUUUUUUI
UUUUUUUUIJUUIJUUUUUUUUUUUULUUUUUUUUUUUUUUUUUU'JUUUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUUUUUUU'
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUI
UUl'UUUUUUUUUUUUlJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUULJUUULJLJUUUUUULJUUUUUUUUUUULJLJLJUUUULJLJLJ'
UUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUlJUUUUUL:UUUUUUUUUUUUUUUUUUUUI
UUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUUUUUUUUUUI
UUUUUUUUUUUUUUUUUUUUUU UUUUUUUUlJIlUUUUUUULJUUUUUUUUUUUlJUUUlJUUUUUUUUUUULUUUUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUUUUUUUUU UlJUlJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUlJIJUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUlJIJUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUW
UUUUUUUUUUUUULJUUUUUUUUU UUUUUUlJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
UUUUUUUUULU'JlJUUUUUUUUU UUUUUUUUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUL:ULUUUUUUUUUUUUuUUUUUWi
UULJUUUlJUUUUULJUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUI
UUUUUUUUUlJUUUUUUuuuuuu lJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
uuuuuuuuuuuuuuuuuuuuuu UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULUUUULUUUUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUlJUUUUUU ULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

UUUUUUUUlJUUUUUUUUUUUU SSS UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUlJUUUUUUUUUUUUUlJi
UUUUUUUUUUULUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUULUUUUUUUUUUUULUUUUUI
UUUUUUUUUUULJUUlJUUUULJU UUU UUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
UU UUUUUUUUUUUUUUUUUU S UU UUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUULUUUUUUUUUUUUUUUUUUU
UU UUUUUUULJUUUUUUUUUL SS JUU UUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUU'J!
UU UULJUUULJUUlJIJUUUUUUUU SUSS UUUUULJUUUUUUUUUUUUUUUUU UUUUUUUUULuuuuuuuuuuuuuuuuuul
UUS UUUUUUUUUUUUULJUUUU S U SSS UUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUUU
U UUUUUUUUlJIJUUUUUUU 5 uu 55 UUUUUUUUUUUUUUUUUUUUUUU UUU5SUUUUUUUUUUUUUUUUUUU~
UUS UUUUUULJUUUUUUUUUU 5 UU S UUUUUUUUUUUUUUUUUUUUUUU uuLt,5wuuuuuuuuuuuuuuuuuul
U Ll U U U UlJ

0.0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.CCC 45.000
0.0 IUUUUlJUlJUUUULJlIUUlJU UU UlJUUUUUUUUUUUUU S IUU U

UlJUUUUUUUUUUUULJUUU 55 UlJUUUUUUUUUUUUUUU 55 U
UUUUUUUULUUUUUUUU 55. UUUUUUUUUUUUUUUUU 555 U 5S UUUUUUUUUUUUUUULUUlUUUUUU55
IJlJI.IUUUUUUUUUULJLJUU 55 ULJUUI'UUUUUUUUULJUULJLJ ULJ555 ULJUUUUUUUUUUUUUUlULUUUUU
'UULJUUUUUUUUUUUUUUUUS UUUULJUUUUULJLJLJUUUUUUULJUUULJI 5 UUUUUUUUUUUUUUUUlUUUUUUUUULJUU 5 UUUI
UUUUUUUUUUUUUUUUUUU UUUULJUUUUUUUUUUUUUUULJUUUU 5S UUUUlJUULJUUUULJUUULLLUUUUUUUUUUUU UUU
ILJUUUUUUUUUUUULJUUULJLJ IJlJU UUUUUUUUUUUUUUULJUUUUUUUUU' 55. UUUUUUUUUUUUUUUUUUUUUUULJUUUUUUUUUUUUU
t'UlJIJUULJUUULJUUUUUU1JUU\'UUU UUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUI
UUUUUUUUUUUUUUULJUUUUUUUUU s UUUUUUUUUUUUUUU"UUUUUUUULJUUUUUUUUUUUULJUUUUUUUUUUUUUULUUUUUUUUUUULJUULJ
LJUUUUULJUUUUUUUUUUUULJUUULJU55 UUUUUUUUUUUUlIUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUUUUUUUUUU

O. 100 IUUUUUUUUU'JUUUUUUUUUUUUUU 5 UUUUUUUUULJLJLJUUUUUUUULJULJUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUULJUUUUUUW
UUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUlIUUUULJUUUUUUUUUUUUUUUULJUUULUUUUULUUUUUUUUUUUUUUULJ

I
UUUUUUUUUUlIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuul
UUULJUUUUUUUUUUUUUUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUULULUUUUUUUUUUUUUULUUU~J

lJUUUUUUUlJUUUUUUUUUUUUUULJUUUUUUUUUUUUUULJUUUUUUUUUUUUUUULJUUUUUUUULJUUUUULJUUUUUUUULUUUUUUUUUUUUUlJUUUUUUUU
UUUUUUU'JULJULJLJUUUUUUUUUIJUUUUUUUUUUUUUUULJUUUUUUUUUUUUUUUUUUUUUUULJUUUUULJUUUUU'JULJUUUUUUUUUUUUUUUUUUUUUUUU:
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUIJUUUUlJUIJUUUlJlJlJUUUUUUUUUUUULJUUUllUUlilJUUUUlJUUUUUUuuuuuuutJl
UUUUUUUUUJi.U.Y.U.uUUUUUUUJ)UUUUUUUUUUUUUUllJ.!ill.lliWUL'lJI)

FIG. 4.

o
:::s
:;.
"
~cr
~
Q
o...,
"~g.
'"....
'"1>
~

'"5.
"'"'@
p;-
o.
"0-

2:
0­
:l'!
"'"'0'

~

~
-.l



408

if F > 0, and

J. KIUSALAAS and H. E. DAVIS

hi < (2M-l)n,c l > (2M-2)n

h2 < (2N-l)n,c 2 > (2N-2)n

if F < 0, where M and N are nonzero, positive integers. Therefore, the boundaries between
stable and unstable zones can be readily determined by plotting the curves

h1,2(F, Q) = (2N - I)n, c1,2(F, Q) = (2N -2)n, N = 1,2...

which has been done in Fig. 6. The stable zones have the form of strips, almost parallel to
the F-axis, bounded by the lines C2 = (2N - 2)n and h2 = (2N -1)n, and truncated in their
length by iines ('1 = (2N -2)n and hi = (2N -1)n, which cut "diagonally" across the
F-Q plane.

The absence of velocity-dependent damping from present analysis deserves a special
mention. Its introduction would complicate the analysis considerably, and it is almost
certain that both necessary and sufficient conditions for stability cannot be derived in a
simple form. It would nevertheless be interesting to discover whether a small damping
coefficient would introduce additional stable zones, particularly in the region of small Q

and positive F, or if it would merely change the boundaries of the present stable zones.
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A6CTpaKT-):(aeTCR aHanH3 yCTOH'IHBOCTH ynpymx CHCTeM, 06na,L\alOlllHX ,L\8YMR CTeneHRMH c8060,L\hI
11l80HHhIH MallTHHK UHrnepa/, rro,L\ 8nHRHHeM 3arra3JlhI8alOIlleH cne.QlIUleli CHnhI. Pe3ynhTaThl, rronY'leHHhIe
Ha OCHOBe TeopeM DOHTpliDlHa, KacalOlllHXCR KOpHeH 3KCrrOTeHIJHanhHhiX rronHHoMo8, npe,L\CTa8nRIOTcli
KaK o6nacTH YCTOH'IH8OCTH H HeycToH'IHBOCTH B napaMeTpH'IeCKOM npocTpaHcTBe BpeMeHH 3ana311hIBaHHlI
H rrpHJIOJKeHHOH CHJIb!. OKarBBaeTClI, 'ITO npH OTCyCTBHH JleMnljJHpoBaHHR MaJIOe BpeMR 3ana3,L\hIBeHHlI
6Y,L\eT rrpH'IHHOH HeycToM'IHBOCTH CHCTeMbI Jlnll Bcex 3Ha'leHHH ClKHMaeMOH CHlIhI.


